
miniGrail

Cezar Câmpeanu Rui Zhou

MiniGrail is a Grail+ clone. However, the code is totally diferent because
its main structure is designed differently.

For the moment, it has limited functionality and only a few of the func-
tions present in Grail+ are implemented in miniGrail.

MiniGrail is based on the MachineCat software an UPEI Honour’s project
of Rui Zhou under the supervision of Cezar Câmpeanu.

As of today July 14, 2012 the following filters are implemented in mini-
Grail:

1. fcmenum: enumeration of words accepted by a DFCA

2. fltofm: converts a finite language to a finite machine

3. fmcomp: make a finite machine complete

4. fmenum: enumeration of words accepted by a DFA

5. fmunion: the finite machine recognizing the union of two languages
represented by two finite machines

6. iscomp: tests if an automaton is complete

7. iscomp2: tests if an automaton is complete(different algorithm)

8. isdeterm: checks if an automaton is complete

9. fmmin tbf: The table filling algorithm for minimizing DFAs

10. mGManual: This Document (pdf format).

11. nfatodfa: transforming a nondetermninistic machne to a determinis-
tic one (subset construction)

12. nfatodfa mG: transforming a nondetermninistic machne to a deter-
ministic one (subset construction), but different implementation

1

http://www.csit.upei.ca/php/TR/.F/DownloadTR?CSIT-TR-15-Mc.pdf%15

13. fmanalyze: does nothing

14. inputTest: tests Input read, used for developmemnt

1 Command line options

The following commend line options are implemented in miniGrail:

−− infoPage Launches the default browser with the location of a HTML documnet
containing detailed information about thet filter/algorithm.

−− info Displays the same HTML file as the option − − infoPage, but it is
filtered to text mode.

−unique Eliminates duplicate lines in the output for nondeterministic finite
machines

−− version Outputs the version of miniGrail

2 Project Structure

miniGrailis built up in a very strict hierarchy that actually make sense,
No(or very little) circular dependency exists. Circular references are com-
mon in Grail+ , where an hierarchy of classes and algorithms is harder to
achieve.

miniGrail Project Structure

Filter links in Bin/
⇑ (link)

a.out
⇑ (compile)

Main Function
րտ

Filters miniGrail .h
տր

Algorithms
⇑

Theory Objects
⇑

Back Bone
⇑

Debug Control
⇑

(STD C++ & Library)

miniGrail Dependency Map.

2

3 Addind and Removing Code in miniGrail

3.0.1 Add New Algorithm

Add a new algorithm into miniGrail is very simple. Now We use an example
to illustrate the detailed process to accomplish such task. Say we want to
add a new algorithm, called “mGMachineAnalyze” which simply takes in
an non-deterministic finite machine and out put the size. Following is the
steps:

1. Goto the folder miniGrail/Algorithms/, and make an folder called
“mGMachineAnalyze”, inside which we create a file called “mGMachineAnalyze.cpp”.

2. Open the file “mGMachineAnalyze.cpp”, and code the function. The
function can implement any algorithm we want, the code inside this
function can call any functions that is in miniGrail library or any
other function that is already implemented in the Algorithms/ folder.

For this easy example, we code the function as such:

//This a lgor i thm i s to analyze a f i n i t e machine
us ing namespace std ;
void mGMachineAnalyze (const mGNFA& fm)
{
cout << ”Analyzing DFA:” << endl ;
mGSet<mGTransition> t s = fm . ge tT ran s i t i on s () ;
cout << ”This machine has” << t s . s i z e ()

<< ” t r a n s i t i o n s ” << endl ;
}

Note that all the functions in the algorithms folder will be a global
function. miniGrail is designed in such way that none particular
algorithms need to be put into any theory object class as its member
function unless the algorithm logically belongs to the theory object.
This design is more logically intuitive because algorithms uses theory
objects, not the other way around. Make algorithms global also helps
to make smaller theory objects class and keep the project modularized.

3. Besides the cpp file, add a file called “mGMachineAnalyze.h”, in which
we add the declaration of the function that we implemented:

// Algorithms s e t : The ana l y i s o f f i n i t e machines
// the methods d e c l a r a t i on
void mGMachineAnalyze (const mGNFA&); //Analyze a FA

3

documents.

4. In terminal, Navigate to the folder miniGrail/ and re-make. miniGrail
will automatically pick up the new algorithms, re-generate include files
and add the function to the library.

5. All done! So easy!

* Please note that it is a good practice to keep the names of the function,
the header and cpp file as well as the folder holding them the same, as some
“meta-programming” process during the compilation may need to gather
information from the file names.

3.0.2 Add New Filter

A filter is an easy way to invoke the algorithms we implemented in miniGrail,
to enable fast everyday test! Now we assume we want to add a new filter,
which will invoke the algorithm “mGMachineAnalyze” and output the result.
Steps:

1. Open the folder miniGrail/Filters/, inside which we add a new
folder called “fmanalyze”. In the newly created folder, add a file
“fmanalyze.cpp”

2. Implement the filter in the cpp file, usually the filter simply handles
I/O and call the associated function:

void fmanalyze ()
{
mGNFA nfa ;
std : : cout << ” en te r nfa ” << std : : endl ;
std : : c in >> nfa ;
mGMachineAnalyze (nfa) ;

}

Please note that the filter function must be in the format:void function name(void),
to keep the consistency of function pointers. This is required for
miniGrail to pick up the filter.

3. Beside the cpp file, create a file named “fmanalyze.h”, in which we
code the declaration of the filter function:

void fmanalyze () ;

4

4. Re-make the project, miniGrail will automatically pick up this filter
code and generate a new filter in the miniGrail/bin directory.

5. All done, you now have a new filter! Please remember to also put an
simple HTML file beside it to hold the information about the filter.

* Please note that it is a must to keep the names of the function, the
header and cpp file as well as the folder holding them the same, as the
auto filter collection process does depend on them when it comes to filter
generation.

4 Using miniGrail

In the this section we include some runni9ng examples for the use with
miniGrail:

miniGrail$ ls

Algorithms/

BackBone/

Bin/

DebugControl/

Documentation/

Filters/

MainFunction/

Makefile

miniGrail.h

Tests/

TheoryObjects/

a

b

miniGrail$cd Bin

Bin]$./isdeterm b

Oops, miniGrail can’t open b

[Bin]$./isdeterm ../b

no

[Bin]$./isdeterm ../a

yes

5

[Bin]$ cat ../a

$ cat ../a

(start) |- 0

0 a 1

1 a 2

2 a 4

3 a 5

5 a 2

4 b 1

1 b 3

2 -|(FINAL)

[Bin]$./fmenum -n 7 ../a

a a

a b a a

a a a b a

a a a b b a a

a b a a a b a

a a a b a a b a

a b a a a b b a a

Bin]$./fmenum -n 7 ../a| sed -e "s/ //g"

aa

abaa

aaaba

aaabbaa

abaaaba

aaabaaba

abaaabbaa

$ fmenum ../a | head -7

aa

abaa

aaaba

aaabbaa

abaaaba

aaabaaba

abaaabbaa

6

$ cat ../b

(start) |- 0

0 a 1

0 b 4

1 a 5

1 a 2

2 a 4

3 a 5

5 a 2

4 b 1

1 b 3

2 -|(FINAL)

0 -|(FINAL)

$./fmenum -n 7 ../b

a a

a a a

b b a

a b a a

b b a a

a a a b a

b b b a a

[Bin]$./fmenum -n 7 ../b| sed -e "s/ //g"

aa

aaa

bba

abaa

bbaa

aaaba

bbbaa

$ fmenum ../b | head -7

aa

aaa

bba

abaa

bbaa

aaaba

7

Bin]$ cat ../c

l=12

(START) |- 0

0 a 1

1 b 2

2 a 3

3 b 4

4 a 5

5 b 2

5 a 0

2 b 1

0 -| (FINAL)

Bin]$ fcmenum ../c

ababaa

abbbabaa

abbbbbabaa

ababababaa

abbbbbbbabaa

abbbabababaa

ababaaababaa

abababbbabaa

Bin]$./fcmenum ../c| sed -e "s/ //g"

ababaa

abbbabaa

abbbbbabaa

ababababaa

abbbbbbbabaa

abbbabababaa

ababaaababaa

abababbbabaa

Bin]$./fcmenum -n 3 ../c| sed -e "s/ //g"

ababaa

abbbabaa

8

5 Speed Tests. Comparison with Grail+

20.0 22.0 24.0 26.0 28.0210.0212.0214.0216.0218.0220.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Machine Size

P
ro

ce
ss

T
im

e(
s)

Grail+

miniGrail:iscomp2
miniGrail:iscomp

Figure 1: IsComp test

9

20.0 22.0 24.0 26.0 28.0210.0212.0214.0216.0218.0220.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Machine Size

P
ro

ce
ss

T
im

e(
s)

miniGrail

Grail+

Figure 2: IsDeterm test

20.0 22.0 24.0 26.0 28.0210.0212.0214.0216.0218.0220.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Machine Size

R
ea

d
in

T
im

e(
s)

miniGrail

Grail+

Figure 3: fmenum test

10

20.0 22.0 24.0 26.0 28.0210.0212.0214.0216.0218.0220.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Machine Size

R
ea

d
in

T
im

e(
s)

miniGrail

Grail+

Figure 4: fmunion test

11

	Command line options
	Project Structure
	Addind and Removing Code in miniGrail
	Add New Algorithm
	Add New Filter

	Using miniGrail
	Speed Tests. Comparison with Grail+

